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I. INTRODUCTION

The problem of friction between two substrates which are
in moving contact is very rich physically as well as very
important technologically �1–5�. Following the development
of atomic force microscopy, studying tribology has ap-
proached the microscopic level, while nanotechnology be-
gins to build devices so miniaturized that they probe the
microscopic properties of the materials. This explains the
interest of numerical simulations of the friction �5–16�.

When the static frictional force is nonzero, the friction
generally displays two different regimes: a stick-slip motion
at low driving velocities and smooth sliding at high veloci-
ties. In most cases the stick-slip regime is not desired and has
to be avoided. This requires the knowledge of the mecha-
nisms of these two regimes and an understanding of the tran-
sitions between them.

The question of interest of the present work is the micro-
scopic mechanism of the transition from smooth sliding to
stick-slip motion. In a previous work �16�, we studied the
motion of two substrates separated by a thin lubricant film at
small velocity of the top substrate vtop, looking for the small-
est possible value of the velocity for which the motion stays
smooth. We have shown that the microscopic transition from
sliding to stick-slip takes place at a velocity which is many
orders of magnitude higher than that observed in macro-
scopic experiments. The same result was also obtained in
almost all other simulations �e.g., see review papers �5� and
references therein�. Namely, the experiments typically dem-
onstrate the transition from stick-slip to smooth sliding at a
threshold velocity vc�1 �m/s, while the simulations give
values vc�10 m/s, which are atomic-scale values because
they correspond to moving along a length of the order of a
lattice spacing �1 Å� in a time of the order of the period of
atomic vibrations �10−11 s�.

This suggests that the macroscopic mechanism of the
transition from stick-slip motion to smooth sliding is com-
pletely different from the microscopic one. However, in

simulation the system size available for the study is always
rather small so that the simulation can describe rigorously
neither the elastic properties of the substrates nor the inertia
effects due to a macroscopically large mass of the sliding
substrate. This leaves room for speculation that the disagree-
ment between the simulations and experimental results is
connected with the too small size of the simulated system.
This is the point that we want to clarify in the present work.
We shall prove that the transition from smooth sliding to
stick-slip motion in a single microscopic frictional junction
always takes place at an atomic-scale relative velocity of the
substrates, even if this contact is between a substrate and a
very large sliding block, which could even extend to infinity
in the direction perpendicular to the sliding plane.

In the simplest model of friction, both substrates are
treated as rigid. This reduces the model to one body, a
“particle,” moving in a periodic potential created by the
bottom substrate, in the presence of friction, and driven by
an external force. This model allows a rigorous treatment as
summarized in the monograph by Risken �17�. At zero
temperature, T=0, the average velocity �v� of the single
driven particle as a function of the dc driving force F exhib-
its hysteresis. To be specific, let us consider a particle of
mass M subjected to an external sinusoidal potential
V�x� with an amplitude E=max�V�x��−min�V�x�� and a pe-
riod a. If the particle is driven by a force F, it starts to move
when F exceeds the value Fs=�E /a. If the force is then
reduced gradually, a backward transition occurs when the
force drops below a threshold F=Fb= �2�2/����ME, where
� is the viscous damping coefficient. Thus, in the under-
damped case, ���c	��2 /2�2��E /Ma2= �� /4��s �where

�s= �2� /a��E /2M is the frequency of small-amplitude os-
cillation of the particle at the bottom of the external poten-
tial�, we have Fb�Fs, and the system exhibits hysteresis due
to the inertia of the particle. In this simplest model of fric-
tion, the forward locked-to-running transition corresponds to
overcoming the static friction force Fs, while the threshold
force Fb is the kinetic frictional force. The inequality Fb
�Fs is the necessary condition for existence of stick-slip.

The threshold force Fb can be found from a calculation of
energy gain and loss. When the particle moves for the dis-*Electronic address: obraun@iop.kiev.ua
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tance a �one period of the external potential�, it gains the
energy Egain=Fa from the driving and loses some energy
Eloss due to friction. In the steady state these energies must be
equal to each other: Egain=Eloss. Thus, the backward thresh-
old force for the transition from the sliding �running� motion
to the locked �pinned� state is determined by Fb
=min�Eloss� /a. The energy loss is caused by an external fric-
tional force Ffric�t�=M�v�t�, which models the energy trans-
fers into the substrate. It is given by

Eloss = 

0

�

dt Ffric�t�v�t� = 

0

�

dt M�v2�t� = M�

0

a

dx v�x� ,

�1�

where �=a / �v� is the “washboard period;” i.e., the time for
motion over the distance a at the average velocity �v�. The
minimal loss is achieved when the particle has zero velocity
on top of the total external potential: Vtot�x�=V�x�−Fx.

In the limit �→0 and F→0, the minimal energy loss can
easily be found analytically. From the energy conservation
law, 1

2 Mv2+ 1
2E�1−cos�2�x /a��=E, we can find the particle

velocity v�x�. Substituting it into Eq. �1�, we obtain

Fb =
M�

a
� E

M
�1/2


0

a

dx
1 + cos�2�x

a
��1/2

= C��EM�1/2,

�2�

where the numerical constant

C 	 �2��−1

0

2�

dy�1 + cos y�1/2 = 2�2/� � 0.9

depends only on the shape of the external potential. Equation
�2� can be rewritten as

Fb = M�v̄ = �2/��M�vm,

where v̄=a−1�0
adx v�x�, and vm= �2E /M�1/2=�v̄ /2 is the

maximum velocity achieved by the particle when it moves at
the bottom of the external potential. Note that the average
particle velocity, �v�=�−1�0

�dt v�t�=a /�, tends continuously
to zero when F→Fb, because �→� in this limit.

Figure 1 shows the time evolution of the velocity v�t� in a
case where the driving force F slowly decreases with time. In
this figure and in the remainder of the paper we use a dimen-
sionless system of units, where a=2� and E=2.

Although the transition from the sliding motion to the
locked state is continuous, the velocity drops quite sharply at
the threshold force F=Fb �Fb�0.127 for �=0.1 and M =1�.
When the force changes adiabatically, the hysteresis of the
function v�F� only exists for T=0. At any small but nonzero
temperature, there is no hysteresis for a single particle. The
transition from the locked state, which in this case is actually
a state in which the particle moves by thermally activated
jumps from a potential well to another, to the running state,
and the backward sliding-to-locked transition, both take
place for the same value of the force F=C���EM�1/2, where
C��2.3742 �17,18�. However, if the force F changes with a
finite rate r=	F /	t
0, the hysteresis still exists, especially
at high rates �r
Fs��.

More complicated models, such as a one-dimensional
�1D� chain of interacting atoms in a periodic substrate poten-
tial �the Frenkel-Kontorova model� �12,19�, a two-
dimensional array of atoms in a two-dimensional periodic
potential �9,10,19�, and even a three-dimensional �3D� model
of friction, where two rigid substrates are separated by a thin
lubricant film �16� �see Sec. III B� exhibit properties which
are qualitatively similar to the simple one-particle model. In
all these models, the sliding-to-locked transition takes place
at an atomic-scale velocity of the sliding block.

However, the characteristic velocity of the transition de-
pends on the mass of the moving substrate. As shown above,
it may be estimated to be vm� �E /M�1/2, where E=Ns�, Ns is
the number of atoms at the interface, and � is the barrier per
one surface atom. When the sliding block is considered as
rigid, then M =NsN�m, where m is the atomic mass and N�

is the number of atomic layers in the block. Thus, for a
macroscopically large block �N�→��, the velocity at the
transition may be made as small as desired �vm�N�

−1/2�, e.g.,
as low as the velocities observed experimentally, which
might seem to reconcile theory and experiments. This is,
however, an oversimplified view that is wrong, as was first
mentioned by Persson �11�. The reason is that for a nonrigid
substrate, only the atomic layer which is the closest to the
substrate stops at the transition so that M =mNs, and vm
should be of atomic-scale value. In the present work we
prove that for the case of a planar geometry of the sliding
contact, this is indeed the case, even if the sliding block has
an infinite mass. This is in agreement with recent molecular
dynamics �MD� results due to Luan and Robbins �25�. More-
over, we show that when the moving object has its own
internal degrees of freedom that can be excited due to sliding
�as it is in the case of sliding of the top block in tribology
experiments�, then the transition becomes discontinuous.

The paper is organized as follows. The study is split into
two sections: Sec. II, wherein the case of a dry friction is
discussed, and Sec. III, wherein the system with a thin lubri-
cant film is studied. In Sec. II A we present the Green-

FIG. 1. �Color online� The velocity of the atom �gray curve�
versus time when the force �black solid line� smoothly decreases.
Inset: zoom of the transition at F=Fb=0.127 �M =1, �=0.1�.
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function technique, which allows an analytical calculation of
the kinetic frictional force for a simple model. This technique
is applied in Sec. II B to a simplified one-dimensional model
of the top substrate, where most results may be obtained
analytically in a closed form. The analytical results are com-
pared with the numerical ones in Sec. II C, which confirms
the accuracy of the analytical approach. In this subsection we
also show the difficulty of an accurate simulation of the
sliding-to-locking transition. The Green-function technique
is then applied in Sec. II D to the three-dimensional model of
the semi-infinite top substrate, which cannot be studied with
MD simulation. In Sec. III the system with two substrates
separated by a thin lubricant film is studied. In Sec. III A we
first describe a simplified model which demonstrates the
layer-over-layer sliding. We then present the results of a re-
alistic 3D simulation of the lubricant system. The model used
in simulation is briefly described in Sec. III B. We then con-
sider two typical examples of the lubricant: the case of a
“hard” lubricant in Sec. III C, in which the lubricant film
remains in a solid state during sliding, and the case of a
“soft” lubricant in Sec. III D, in which the lubricant is melted
during sliding. In both cases we demonstrate that the velocity
of sliding-to-locked transition is of atomic-scale value. The
same is true for the critical velocity of the transition from the
stick-slip motion to smooth sliding, as discussed in Sec.
III E. Finally, Sec. IV concludes the paper with a short dis-
cussion.

II. DRY FRICTION

Let us begin with the simplest case of “dry friction,” in
which the top substrate is in direct contact with the bottom
substrate. The case of two substrates separated by a thin
lubricant film will be considered in Sec. III.

A. Green-function technique

In general the frictional force acting on the top block
when it moves over the periodic external potential created by
the bottom substrate, can be found by equating the energy
gain and loss. In what follows it will be convenient to split
the total kinetic frictional force into three contributions that
we shall examine separately:

F = F1 + F2 + F3. �3�

These forces designate the average of each contribution for
the motion of the sliding block over one lattice spacing of the
substrate.

The first contribution F1 in Eq. �3� describes the flow of
energy into the top substrate that is due to internal degrees of
freedom �phonons� in the moving block. Namely, when the
top block moves with an average velocity �v�, the atoms in
the lowest layer of the top block are excited by a force com-
ing from the interaction with the substrate. Its main compo-
nent is oscillating at the washboard frequency �0= �2� /a�

�v�. According to the linear response theory �20�, when a
system is excited by a small periodic force f�t�
=Re f0 exp�i�0t� with the frequency �0 and amplitude f0

�here f0 is real�, then its velocity oscillates with the �com-
plex� amplitude

v0 = i�0x0, x0 = ���0�f0, �4�

where ���� is the generalized susceptibility. The rate of en-
ergy loss �i.e., the energy absorbed by the top block per one
time unit� is then equal to

R =
1

2
f0

2�0 Im ���0� . �5�

It is convenient to define the �causal� phonon Green function
G��� by the equation �21�

��2 − i��l − D� G��� = 1, �6�

where D is the elastic matrix of the semi-infinite top sub-
strate and �l is the damping inside the block. In our case we
consider the limit �l→0, but it is not set to be strictly equal
to 0 for definiteness of the response function. The suscepti-
bility ���� can then be expressed through the Green function
as ����=−G��� /m �here � must be real�. Actually, for a
crystal lattice, the excitation can be applied at any site, so
that it is a matrix, as well as the response, and both � and G
are tensors. However, for our applications wherein the exci-
tation is restricted to the sliding plane, and we are interested
in the response of the atoms in this plane, we can restrict the
analysis to some of their scalar components, as discussed
below.

The rate of energy loss can now be obtained from

R =
�

4

f0
2

m
���0� , �7�

where ���� is related to the Green function G��� by

���� = −
2

�
� Im G��� �8�

is the local density of phonon modes in the top substrate
because it is deduced from the component of the tensor G
which involve surface atoms. The density ���� is normalized
to unity, �0

�d�����=1. The energy absorbed by the top sub-
strate during its motion for one period of the external poten-
tial is equal to Eloss

�1� =R�=2�R /�0=Ra / �v�, and the contri-
bution F1 can be found as F1=Eloss

�1� /a, or

F1 =
�

4

f0
2

m�v�
���0� . �9�

The contributions F2+F3=m�v̄ in Eq. �3� are due to the
external damping of the atoms of the lowest layer of moving
block that are in contact with the substrate, similar to the
scenario described above in Sec. I for the single-particle
model. The flux of energy into the bottom substrate is due to
the excitation of phonons and to the transfer of electrons
above the Fermi level, creating holes below. For simplicity,
and because we are interested in qualitative results only, let
us assume that the coefficient � is constant �see, however,
Sec. III B, wherein the 3D simulations are described�. It is
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convenient to split the friction force describing this energy
transfer to the substrate a−1 �0

�m�v2�t�dt into two parts: the
“trivial” contribution

F2 = m��v� �10�

and the “fluctuating” contribution

F3 =
m�

a



0

�

dt�v2�t� − �v�2� =
m�

�v�
1

�



0

�

dt�v�t� − �v��2.

�11�

This fluctuating contribution, which grows at low velocities,
finally leads to the transition from the smooth sliding to the
locked state.

If we take into account only the lowest harmonic of the
washboard frequency,

v�t� = �v� + �v0�cos��0t + �� ,

then

F3 =
1

2

m�

�v�
�v0�2. �12�

The amplitude �v0� can again be found with the help of the
linear response theory, �v0�=�0����0��f0 according to Eq.
�4�, so that the contribution F3 can be expressed as

F3 =
�f0

2

2m
�2�

a
�2

�G��0��2�v� , �13�

where we put f0=Fs. Note that for the single atom, the
threshold force for locking was determined by the F3 contri-
bution only. However, when the moving block has internal
degrees of freedom, then F1
0, and the velocity of the
running-to-locked transition may be nonzero, so that F2
0
as well.

Above we considered only the contribution from the first
harmonic of the force exerted by the substrate, which is at
the washboard frequency. In the general case, however, we
have to expand the trajectory x�t� into a Fourier series and
then sum over the contributions of all harmonics �n= �n
+1��0, n=0, . . . ,�. Numerically, for a given �v� we have to
start with some approximate shape of x�t� �e.g., x�t�= �v�t�
and then calculate step by step the force acting on the atoms
of the top block,

f�t� = − sin x�t� − m�ẋ�t� , �14�

make its Fourier transform,

fn = 

0

�

dt ei�ntf�t� , �15�

find the velocity in response to this force,

vn = − i�nfnG��n� , �16�

then perform the backward Fourier transform,

v�t� = �2��−1�0�
n=0

�

e−i�ntvn, �17�

and finally calculate x�t� as the integral of v�t� over time; the
output trajectory must coincide with the input one. Repeating
these operations iteratively, one can find the self-consistent
trajectory. Then, the radiation contribution has to be calcu-
lated as

F1 = −
1

2m�v��n=0

�

�n�fn�2 Im G��n�

= −
�

am
�
n=0

�

�n + 1��fn�2 Im G��n� , �18�

the trivial contribution is given by Eq. �10�, and the fluctu-
ating contribution by Eq. �11�, or

F3 =
m�

2�v��n=0

�

�vn�2 =
��v�
2m

�2�

a
�2

�
n=0

�

�n + 1�2�fnG��n��2.

�19�

Applying this procedure for the case of a single atom,
when G���=�−2, we obtain the dependencies shown in Fig.
2 �of course, for the single atom these dependencies can
easily be calculated directly by integrating the motion equa-
tion; we used this fact to test the accuracy of the Green-
function technique�. One can see that the harmonics with n
�1 begin to be important at low velocities �v��1 only. We
also see that the total frictional force F decreases monotoni-
cally with decreasing of �v�, and the sliding-to-locked tran-
sition is continuous; i.e., �v�→0 when F→Fb. However, be-
low we show that already for a simple one-dimensional
model of the top sliding substrate, the transition becomes
discontinuous.

B. One-dimensional semi-infinite substrate: analytics

Let us first apply the Green-function technique to a sim-
plified model when the top substrate is modeled by the semi-

FIG. 2. The total frictional force F and its contributions F2 and
F3 as functions of the averaged velocity �v� for the single atom
calculated by the Green-function technique for �=0.1 and m=1. We
also plot the amplitude of the maximum harmonic max�fn�, which is
equal to 1 when the main washboard harmonics dominates, but
begins to decrease when high-order harmonics begin to contribute.
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infinite one-dimensional chain of atoms oriented perpendicu-
larly to the bottom substrate. In this case most of the results
can be obtained analytically. Namely, if the atoms are
coupled by harmonic springs with the elastic constant g and
the lattice constant as, then the chain is characterized by the
phonon spectrum

�2�k� = 2g�cos kas − 1� ,

or ��k�=�m sin�ask /2�, where �m=2�g /m is the maximum
phonon frequency of the top block. The Green function for
the semi-infinite one-dimensional chain can be found by the
standard technique �21,22�. For this one-dimensional model
the Green function is actually a matrix. However, as the ex-
citation is applied to site 1 in the lattice, and we are inter-
ested in the response of this site 1, we only need its compo-
nent G11���, which we shall denote by the simplified
notation G���. The calculation yields

Im G��� = −
2

�m
2 ��m

2

�2 − 1�1/2

�20�

inside the phonon zone ������m�, and Im G���=0 outside
the zone ������m�. The real part of the Green function is
constant inside the zone �Re G���=2/�m

2 for �����m�,
while outside the zone ����
�m�, the real part is equal to

Re G��� =
2

�m
2 
1 − � x − 1

x + 1
�1/2� , �21�

where x=2�2 /�m
2 −1. The surface phonon density of states

�11��� �denoted by the simplified notation ����� is related to
G11=G��� by Eq. �8�. It is equal to

���� =
4

��m
�1 −

�2

�m
2 �1/2

, ��� � �m. �22�

The substitution of this expression into Eq. �9� yields

F1 =
1

4
�2�

a
� f0

2

g

� a

2�
�2 4g

m�v�2 − 1�1/2

, �23�

provided the washboard frequency is inside the phonon spec-
trum ��0��m�. In the low-velocity limit ��v�→0�, Eq. �23�
leads to

F1 �
1

2

f0
2

�mg

1

�v�
. �24�

Thus, the phonon contribution to the frictional force tends to
infinity at low velocities because the density of phonon states
�22� is nonzero at �=0 for one-dimensional systems �for the
three-dimensional model of the substrate, the situation is
more delicate, see Sec. II D�.

From Eqs. �4� and �20� we have �v0�=2f0 /m�m and

�G��0��2 =
4

�m
2 �0

2 =
4

�m
2 � a

2�
�2 1

�v�2 , �25�

so that the contribution F3 is equal to

F3 =
�f0

2

2g�v�
. �26�

The function F�v� is shown in Fig. 3, together with the
contributions F1�v�, F2�v�, and F3�v�.

The function F�v� has a minimum at v=vb�1.3, where
F�vb�=Fb�0.253. The part of the F�v� curve to the right of
the minimum �v�vb� corresponds to the stable motion,
while the solution for v�vb interval is unstable. Therefore,
when the velocity decreases below vb, the system must
switch abruptly to the locked state. This is an important re-
sult of the present work: if the dc force applied to the upper
layer of the top substrate gradually decreases, then the tran-
sition from the sliding regime to the locked state that occurs
at F=Fb takes place when the average velocity of the top
block is nonzero �vb
0�, contrary to the scenario of the
single-particle model described in Sec. I. The dependencies
Fb and vb on the external damping � are shown in Fig. 4.

For not too small external damping, when vb
� �a /2���m, one can find approximately that

vb �
f0

�4m3g�1/4

1
��

�27�

and

Fb � f0�4m/g�1/4�� . �28�

We emphasize that the threshold values do not depend on the
size of the top block or on its total mass, although they
depend on its elasticity, a larger g leading to lower values for
both thresholds. However, these dependencies are weak; Fb
and vb�g−1/4 only.

The analytical results presented above were obtained for
the case in which only the main harmonic of the washboard
frequency was taken into account. However, from the full

FIG. 3. The frictional force �solid curve and solid diamonds� as
a function of the velocity for the one-dimensional model of the top
substrate with m=1, g=10 ��m�6.32� and �=0.1, and the contri-
bution F1 �Eq. �23�� due to radiation into the top substrate �dotted
curve and open diamonds�, the trivial contribution F2=m��v� �solid
line�, and the fluctuating contribution F3 �Eq. �26�� �dashed curve
and crosses�. The solution to the right of the minimum, v�vb cor-
responds to the stable motion, while the solution in the v�vb in-
terval corresponds to the unstable motion.
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self-consistent calculation, we found that the contribution of
higher harmonics becomes important only at v�1, as shown
in Fig. 5.

It should be noticed that the minimum of F�v� for v=vb is
related to the rise of F1 for low velocity, i.e., a sharp increase

of the flow of energy into the moving block, which occurs in
the one-dimensional model because the density of phonon
states at �=0 is nonzero. This is a peculiarity of the one-
dimensional model, but we show in Sec. II D that a mini-
mum in F�v� still exists in a three-dimensional model, so that
the results that we derived are qualitatively preserved for a
realistic case.

C. One-dimensional semi-infinite substrate: simulation results

Now let us check the analytical results of the previous
section with the help of direct simulation of the same model.
Let the sliding block consist of N atoms �corresponding to N
layers�, each having the mass m=1. The first layer moves in
the external sinusoidal potential due to the bottom substrate,
and the dc force F is applied to the last layer of the top
substrate, so that the equations of motion are

ẍ1 + �ẋ1 + �1�ẋ1 − ẋ2� + g�x1 − x2� + sin x1 = 0, �29�

ẍl + �l�2ẋl − ẋl−1 − ẋl+1� + g�2xl − xl−1 − xl+1� = 0,

l = 2, . . . ,N − 1, �30�

ẍN + �N�ẋN − ẋN−1� + g�xN − xN−1� − F = 0. �31�

To simulate the semi-infinite substrate, the damping �l inside
the moving block was chosen to be zero at the interface and
to increase smoothly far away from the interface, as

�l = �m
hl − h1

hN − h1
, hl = tanh� l − Ld

	L
�, l = 1, . . . ,N ,

�32�

where we choose Ld=0.6N, 	L=N /7, and �m=10�s �recall
that �s=1 in our system of units�. It is important to notice
that the value of �m is not significant. The role of this damp-
ing, which only acts far from the bottom substrate, is to
prevent the phonon waves generated in the sliding block at
the contact with the substrate from being reflected on the
boundary of the moving block and coming back to the con-
tact. Physically, this means that the thickness of the moving
block is large enough and that the energy generated at the
contact can be dissipated at the top of the block. We empha-
size that in the simulation we use a constant-force algorithm,
contrary to the constant-velocity assumption used in the ana-
lytical approach. However, as we will see from the results,
both approaches lead to the same results.

In Fig. 6 we present the simulation results and compare
them with those of the analytical Green-function approach of
Sec. II B. One can see that the agreement is rather good,
realizing that in the analytical approach we took into account
only the main harmonic of the force exerted by the substrate
and neglected all higher-order ones. These results with a one-
dimensional model validate our approximate Green-function
approach. Although it is not a strict proof of its validity in
higher dimensions, it allows us to use that approach with
more confidence in the three-dimensional case, where it be-
comes the only practical method. Reliable simulations can-
not be performed in this case because the one-dimensional

FIG. 4. �a� The threshold force Fb and �b� the velocity vb for the
sliding-to-locked transition as functions of the external damping �
in the 1D model of the top substrate for two values of the substrate
elastic constant g=10 ��m�6.32, solid curves� and g=100 ��m

=20, dashed curves�; m=1.

FIG. 5. The comparison of the self-consistent calculation �solid
curves and solid symbols� and those with the main harmonics of the
washboard frequency only �dotted curves and open symbols� for the
1D model of the top substrate ��=0.1, g=10, and m=1�.
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example shows that a very large number of layers �
103� �as
well as a suitable choice of the damping�, is required to get
results that are not affected by waves reflected on the top
surface of the block, and are stable with respect to small
parameter changes.

The transition itself is shown in Fig. 7. One can see that
the trajectories of atomic layers look similar to the trajectory
of the single atom presented in Fig. 1. The inset of Fig. 7 also
clearly demonstrates that, when the sliding block stops, the
vanishing of the velocity oscillations, excited by the sub-
strate, propagates as a signal in the top substrate, leading to a
gradual stopping of the sliding block.

This behavior occurs because the damping �l given by
Eq. �32� is such that it prevents the reflection of the waves
sent from the contact into the sliding block. It is interesting

to notice that if one chooses �l to be constant �which could
model the situation when the top block corresponds to a thin
slab, which could be attached to another large block so that a
reflecting interface exists�, then the wave generated at the
sliding interface and propagating through the substrate is re-
flected from the top surface of the slab and goes back. A
standing wave is excited in the slab, especially for small
values of �l. The energy carried by this wave tends to pre-
vent the transition to the locked state and the sliding state
persists now for much smaller values of the dc force, as
shown in Fig. 8.

This resonance effect clearly depends on the width of the
top block: the narrower the slab, the larger is vtop, and the
smooth sliding persists for smaller forces, as demonstrated in
Fig. 9.

FIG. 6. The dependencies v�F� for the 1D top substrate with
g=10 for three values of the external damping coefficient �=0.03,
0.1, and 0.3. The approximate analytical results are shown by solid
curves �the unstable branches, by dashed curves�, the dash-dotted
lines describe the trivial contribution v=F /m�, and the simulation
results, by open diamonds and dotted curves �N=2048, �wait=5

104�0, �measure=5
102�0�.

FIG. 7. �Color online� The transition from the smooth sliding to
the locked state. The average velocity of the sliding block versus
time for a driving force decreased down to F=0.24, for 1D sliding
block of N=2048 atom, with g=10 and �=0.1. Inset: the velocities
of some selected layers of the top substrate.

FIG. 8. �Color online� The transition from sliding to the locked
state when the force decreases with time for a 1D top substrate of
N=2048 layers with the constant damping �l=0.1 in the substrate
�g=10, �=0.1�.

FIG. 9. The averaged velocity of the top substrate as a function
of the dc force for the 1D model of the top substrate with a constant
damping �l=0.1 �g=10, �=0.1, �measure=2
103�0�. The simula-
tion results from Fig. 6 for the smooth damping given by Eq. �32�
are shown for comparison.
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D. Three-dimensional substrate

The Green-function technique can be extended to three-
dimensional crystals as described in Refs. �21,22�. The lat-
tice Green function is now a six-dimensional matrix. As
translational invariance is assumed in the sliding plane, the
in-plane components can be expressed in Fourier space, and
they depend on a wave vector k� in this plane. We shall use
an approximate expression obtained by averaging the lattice
Green function over the in-plane Brillouin zone, so that, as in
the one-dimensional case, it only depends on two spatial in-
dices denoting layers orthogonal to the sliding plane. We
henceforth denote G���, as before, the component G11��� of
the lattice Green function averaged in the sliding plane. It is
the only component of interest here, from which the local
density of phonon states ����=�11��� can be obtained from
Eq. �8�. With this approach, for the semi-infinite three-
dimensional substrate, the imaginary part of the Green func-
tion can be approximated by the expression �22�

Im G��� = −
16

�m
6 ���m

2 − �2�3/2

= −
16

�m
2 ��1 − �2�3/2, �33�

where �=� /�m, ����1. The real part of the Green function
can be found numerically with the Kramers-Kronig relation

Re G��� =
2

�



0

�

d�1
�1

�1
2 − �2 Im G��1�

=
32

��m
2 


0

1

dy
y2�1 − y2�3/2

��/�m�2 − y2 . �34�

The local density of phonon states at the surface is equal to

���� =
32

��m
6 �2��m

2 − �2�3/2. �35�

The substitution of this expression into Eq. �9� yields

F1 =
8f0

2

m�m
3 �2�

a
�2�1 −

�0
2

�m
2 �3/2

�v� . �36�

Then, using �G�2= �Re G�2+ �Im G�2 and taking the integral
�34� at �=0, which gives Re G�0�=−6/�m

2 , in the limit �v�
→0 we obtain

�v0� =
6f0

m�m
2 �2�

a
��v� �37�

and

F3 =
18�f0

2

m�m
4 �2�

a
�2

�v� . �38�

It is important to point out that, as in our previous analytical
calculations, this result has been derived with the assumption
that the sliding block is only excited at the washboard fre-
quency �0; i.e., all higher-order harmonics have been ne-
glected in the expression of the force exerted by the bottom
substrate.

In this approximation, in the limit �v�→0 we obtain �re-
call m=1 and f0=1� F1= �8/�m

3 ��v�, F2=��v�, and F3

= �18� /�m
4 ��v�. Therefore, the friction force is simply pro-

portional to �v�, so that no locking transition should be ex-
pected; i.e., vb=0 and Fb=0. This is a sharp contrast with the
result obtained with the one-dimensional model of the slid-
ing block, and it appears because, in the limit �→0, the
density of phonon states tends to zero for the 3D model of
the sliding block, contrary to the 1D model described above.
However, at a low velocity of the top block, the motion of
the atoms becomes highly anharmonic, similar to the situa-
tion described in Sec. I for the single atom, and the higher-
order harmonics of the washboard frequency �0=2��v� /a
must be taken into account. When the velocity is low
enough, these high-order harmonics are within the phonon
band where the radiation losses are finite. As a result, the
contributions F1 and F3 are nonzero, and even grow, when
�v�→0, as shown in Fig. 10, which has been obtained with
the iterative numerical process described in Sec. II A. In Fig.
11 we show the behavior of F�v� for different parameters of
the top substrate. One can see that, in all cases, the function
F�v� has a minimum at some value v=vb
0. Thus, the
sliding-to-locked transition is discontinuous.

Therefore, although the analytical calculation restricted to
the fundamental frequency of the force exerted by the sub-
strate on the sliding block points out an essential difference
between the 1D and 3D models, due to the difference in their
phonon density of states around �=0, the self-consistent cal-
culation, taking into account the higher harmonics that be-
come very important at low velocity, shows that both models
give qualitatively the same result because there is a rise of F1
and F3 at low velocity, which, combined with the variation of
F2 proportional to �v�, gives in all cases a minimum of the
total friction force for some nonzero velocity vb.

III. SLIDING WITH A LUBRICANT FILM

In the previous section we considered the simple case of
“dry” friction, in which a �nonrigid� top block slides over the

FIG. 10. The dependence F�v� and its contributions for the
three-dimensional model of the top substrate.
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�rigid� bottom substrate modeled as an external sinusoidal
potential. We showed that the velocity vb at which a running-
to-locked transition occurs is not zero, even for an infinite
sliding block; therefore, the disagreement between the ex-
perimentally observed very low threshold velocity for the
stick slip and the velocity observed in simulations cannot be
attributed to the small size of the simulated systems. Another
explanation for the disagreement could come from the fact
that, in experiments, it is practically impossible to realize a
true dry friction. Even with perfect surfaces, the unavoidable
wear may generate a film of nonsolid material between the
sliding block and the substrate. In the present section we
show that the result that vb�0 remains unchanged when the
sliding block and the bottom substrate are separated by a thin
lubricant film. We concentrate our attention on the properties
coming from this film. The sliding block is replaced by a dc
force applied to the top of the film, which amounts to assum-
ing that the sliding block is fully rigid. The properties of a
system with a lubricant film and a deformable sliding block
could be deduced from the combination of the results of Sec.
II and the present section. However, as we shall show that
the lubricant itself does not lead to a vanishing value for vb,
the main result that vb is finite holds.

A. Layer-over-layer sliding

First, in order to get an analytical insight, we consider a
simplified model wherein the top and bottom substrates are
kept apart by a lubricant film consisting of Nl rigid layers
that can slide with respect to each other. Each layer interacts
with its two neighbors via a sinusoidal potential, so that the
problem is reduced to a one-dimensional lattice with the fol-
lowing equations of motion:

mlẍl + ml�l�ẋl − ẋl−1� + ml�l+1�ẋl − ẋl+1� + sin�xl − xl−1�

+ sin�xl − xl+1� = 0, l = 1, . . . ,Nl, �39�

where x0=0 corresponds to the bottom substrate and xNl+1

	xtop is the coordinate of the top substrate to which the dc
force F is applied;

mtopẍtop + mtop�Nl
�ẋtop − ẋNl

� + sin�xtop − xNl
� = F . �40�

For the sake of simplicity we consider only the case of ml
=m=1 and �l=� because other values do not qualitatively
change the results, and, in particular, the orders of magni-
tude, which are what we are attempting to determine here,
are the same. Equating the energy gain and loss as we did in
Eq. �1�, we can write

F = m�
1

ã



0

�̃

dt


��vtop − vNl
�vtop + �

l=1

Nl

��vl − vl−1�vl + �vl − vl+1�vl�� ,

�41�

where ã= �Nl+1�a and �̃= ã / �vtop�. Equation �41� can be re-
written as

F = �
l=0

Nl

F�vl+1�t� − vl�t�� , �42�

where

F�v�t�� = m�
1

ã



0

�̃

dtv2�t� . �43�

Again, the functional �43� can be split into two parts,
F�v�= ��v� / �vtop���F2�v�+F3�v��: the trivial contribution
F2�v�=m��v� and the fluctuating contribution F3�v�
= �m� / �v��̃��0

�̃dt�v�t�− �v��2.
As an example, let us consider the one-layer lubricant film

�Nl=1�. In the steady state, when the lubricant slides with the
velocity vl over the bottom substrate and with the velocity
vtop−vl with respect to the top substrate, the frictional force
F�vl� applied to the lubricant film from the bottom substrate,
should be equal to the force F�vtop−vl� acting on the lubri-
cant film from the top substrate. A schematic solution of the
equation F�vl�=F�vtop−vl� is shown in Fig. 12. When the
driving velocity is very high, so that F�vtop�
Fs, there is
only one symmetric solution vl=vtop /2. At lower velocities
�vtop
2vb�, there are three solutions, the symmetric one and
two asymmetric solutions: vl=0 �the lubricant is attached to
the bottom substrate� and vl=vtop �the lubricant is attached to
the top substrate�. At low driving velocity �vb�vtop�2vb�,
only two asymmetric solutions exist. Finally, at vtop�vb,
there are no sliding solutions at all.

These qualitative considerations are confirmed by numeri-
cal solutions of Eqs. �39� and �40� presented in Figs. 13 and
14. One can see that the symmetric regime is stable only for
a high sliding velocity, when the gradient of the velocity
between the nearest layers 	v is large enough �i.e., 	v�2.5
for the parameters used in Figs. 13 and 14�, and the sinu-
soidal potential is not too dominant. When the driving force
decreases, the symmetric sliding becomes unstable, and fi-
nally the sliding stops.

The kinetic frictional force in the layer-over-layer sliding
regime can be derived from Eqs. �42� and �43�, if we ap-
proximate the sliding velocities by the first harmonic only,

FIG. 11. The dependence F�v� for the 3D model for different
model parameters, as shown in the legend.

TRANSITION FROM SMOOTH SLIDING TO STICK-… PHYSICAL REVIEW E 72, 056116 �2005�

056116-9



vl+1�t�−vl�t��	vl+v fl sin�� flt�, where 	vl corresponds to
the average relative velocity of the adjusted layers, v fl de-
scribes the velocity oscillation, and � fl= �2� /a�	vl. The ki-
netic friction is then equal to

F = �
l=0

Nl 	vl

vtop
�m�	vl +

m�

2	vl
v fl

2� . �44�

In the symmetric steady-sliding regime, when all layers
slide over one another, we have 	v=vtop / �Nl+1� for all l,
and

F =
m�vtop

Nl + 1
�1 +

1

2

 �Nl + 1�v f

vtop
�2� . �45�

Otherwise, in the totally asymmetric case, when there is only
one sliding interface, we have

F � m�vtop. �46�

The transition from symmetric to asymmetric sliding with
decreasing of the driving velocity was observed by Rozman
et al. �32� in MD simulation of a one-dimensional atomic
chain confined between two sinusoidal potentials. The sym-
metric and asymmetric layer-over-layer sliding regimes have
been observed also in the full three-dimensional MD simu-
lation for a “viscous” three-layer lubricant film �15�, where
the motion of all lubricant atoms was damped by an artificial
external damping coefficient �=0.1�s. In the next subsec-
tions, we describe the simulation results obtained with a
more realistic damping mechanism.

B. Three-dimensional simulation: the model

If we want to proceed to a more realistic description of
the lubricant film, we must drop the assumption of a rigid
layer and a uniform damping coefficient within the lubricant.
In this case an analytical study is no longer possible and we
must rely on three-dimensional molecular dynamics simula-

tions based on Langevin equations with a realistic damping.
Because the model and simulation algorithm was described
in detail in a previous paper �16�, below we only briefly
outline their main features. We study a few atomic-layer film
between two parallel top and bottom substrates. Each sub-
strate is made of two layers. One is fully rigid, while the
dynamics of the atoms belonging to the layer in contact with
the confined lubricant is included in the study. The rigid part
of the bottom substrate is fixed, while the rigid layer of the
top substrate is mobile in the three directions of space x, y,
and z.

All the atoms interact with Lennard-Jones potentials
V�r�=V�����r��� /r�12−2�r��� /r�6� with parameters that de-
pend on the type of interacting atoms. The usual truncation
to r�r*=1.49rll is used. Between two substrate atoms we
use Vss=3 and the equilibrium distance is rss=3. The inter-
action between the substrate and the lubricant is always
much weaker, with Vsl=1/3. For the lubricant itself, we con-
sider two cases henceforth denoted by “soft lubricant” and
“hard lubricant,” although, in both cases, the lubricant is al-
ways less rigid than the substrates. The soft lubricant uses
Vll=1/9 and it describes the case of a lubricant made of
weakly interacting molecules. The hard lubricant uses Vll

FIG. 12. �Color online� Graphical solution of the equation
F�vl�=F�vtop−vl� for the one-layer lubricant film. The curves F�v�
are schematic. The case shown in this figure corresponds to the
intermediate velocity range vtop
2vb, which has three solutions.

FIG. 13. The velocity of the top substrate and the lubricant layer
versus time when the dc force is decreased by small steps �shown
by the dashed curve� for the one-layer �Nl=1� lubricant film with
m=1, �=0.1 for three cases of the initial state: �a� the lubricant is
locked to the bottom substrate, �b� the symmetric configuration
when the lubricant slides over both the bottom and the top sub-
strates, and �c� the lubricant is locked to the top substrate.
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=1. The equilibrium distance between lubricant atoms is rll
=4.14; i.e., it is “incommensurate” with the equilibrium
atomic distance in the substrate. The parameter rsl character-
izing the interaction between the substrate and the lubricant
is rsl=

1
2 �rss+rll�. The atomic masses are ml=ms=1. All the

parameters are given in dimensionless units defined in Ref.
�16�. The two substrates are pressed together by a loading
force that is equal to f load=−0.1 per atom of the top substrate
layer.

The main additional feature of our calculations lies in the
coupling with the heat bath; i.e., the part of the material that
is not explicitly included in the simulation. We use Langevin
dynamics with a damping coefficient � that has been de-
signed to mimic a realistic situation, and is presented in de-
tail in Ref. �16�. In a system such as the one that we consider
here, the energy loss comes from the degrees of freedom that
are not included in the calculation; i.e., the transfer of energy
to the bulk of the two substrate materials. Therefore, the
damping must depend on the distance z between an atom and
the substrate. Moreover, the efficiency of the transfer should
depend on the velocity v of the atom because it affects the
frequencies of the motions that it excites within the sub-
strates. The damping is written as ��z ,v�=�1�z��2�v� with
�1�z�=1−tanh��z−z*� /z*�, where z* is a characteristic dis-
tance of the order of the lattice spacing. The expression of
�2�v� is deduced from the results known for the damping of
an atom adsorbed on a crystal surface. It includes a
frequency-dependent phonon term and an additional damp-
ing due to the creation of electron-hole pairs in the substrate
�16,22,23�.

In order to detect the minimal possible sliding velocity
such that the motion remains smooth, we used three different
algorithms: the constant-force algorithm with adiabatically
changed dc force applied to the rigid part of the top sub-
strate, the constant-velocity algorithm when a spring is at-

tached to the top substrate and its free end moves with a
constant velocity, and “free runs” when, starting from a slid-
ing state, the force is removed and the system relaxes finally
to the locked state. The simulations exhibit the typical be-
haviors of tribological systems, the hysteresis of the force-
velocity dependence and the transition from stick-slip motion
to smooth sliding with increasing of the driving velocity.
Although the mechanisms of sliding are different for the hard
and soft lubricants �the inertia mechanism for the hard lubri-
cant and the melting/freezing mechanism for the soft lubri-
cant�, in all cases we found that the critical velocity is of
atomic-scale value.

C. The case of a hard lubricant: the inertia mechanism

For the case of the hard lubricant �Vll=1�, the lubricant
film remains solid during sliding. The typical hysteretic de-
pendencies vtop�f� are presented in Fig. 15. When the driving
force increases adiabatically �with the constant-force algo-
rithm�, the sliding begins at the threshold force Fs=Nsfs,
where fs is the force per atom and Ns is the number of atoms
in the rigid layer of the top substrate. Then, if the force
decreases starting from the sliding state, a backward transi-
tion takes place at f = fb� fs, and the velocity drops down
from a finite value vtop=vb to zero.

The same drop of the velocity is observed in free runs,
when one starts with the solid-sliding steady-state regime
and the driving force is then removed, so that the top sub-
strate continues to slide due to inertia. The velocity vtop
slowly decreases until it reaches the minimal value vb and
then drops to zero as shown in Fig. 16 �although in the simu-
lation we typically used ms=1 for the mass of substrate at-
oms, the bottom row in Fig. 16 also presents the results for a
much higher atomic mass of the substrate�.

FIG. 14. The same as Fig. 13 for the five-layer lubricant film
�Nl=5�. The initial state corresponds to the symmetric sliding
configuration.

FIG. 15. Hysteresis of the vtop�f� dependence for the hard lubri-
cant �Vll=1�: �a� one-layer lubricant and �b� five-layer lubricant
film.
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The observed hysteresis is well described by the inertia
mechanism analogously to the single-particle model de-
scribed in Sec. I. If the top substrate consisting of two layers
is treated as a rigid object, then the critical velocity can be
estimated as �for details, see Ref. �16��

vbR = � 4

�3

afs

ms
�1/2

� 0.6�fs, �47�

where we have to take a=rss=3. In the simulation we found
that the static frictional force is fs�10−3–10−2, which gives
vbR�0.02–0.06.

In a large series of runs �16,24�, we found that the critical
velocity of the transition from stick-slip motion to smooth
sliding is vc�0.03–0.1 for the case of “perfect sliding,”
when the lubricant has an “ideal” crystalline structure incom-
mensurate with the substrate, and vc�0.1–0.5 for the case
of an “amorphous” structure of the hard lubricant obtained
with the melting/freezing cycles.

D. A soft lubricant: the melting/freezing mechanism

In the case of the soft lubricant �Vll=1/9�, the scenario is
different. Now the lubricant film melts just at the onset of

sliding at F=Nsfs. During sliding the lubricant film is
strongly heated and remains in the molten state. The effec-
tive temperature of the lubricant is approximately linearly
proportional to the driving velocity vtop. Therefore, when the
force and/or velocity decreases, the effective temperature de-
creases as well, until it becomes lower than the melting tem-
perature of the lubricant film. After that, the lubricant film
almost immediately freezes back due to very fast energy ex-
change with the substrates. The system exhibits hysteresis
�see Fig. 17�: when the force decreases starting from the
sliding state, the backward transition takes place at f = fb
� fs.

However, again the threshold velocity vb is of atomic-
scale value �vb�0.1–0.6�, and does not depend on the total
mass or size of the top block �16,24�.

E. The algorithm with an attached spring

Now let us attach a spring to the top substrate and move
its free end with a constant velocity v. As the end moves
forward, the spring stretches and the driving force f increases
until it reaches the value of the static threshold fs. At this
moment the sliding starts. The lubricant will remain in the
solid state in the case of the hard lubricant, and it melts in the
soft-lubricant case. Since, due to hysteretic nature of the
vtop�f� dependence, the kinetic frictional force in the sliding
state can be lower than fs, the top plate then accelerates to
catch up with the spring end and f decreases. If v
vc�vb,
the steady sliding regime takes place. However, if v�vc, the

FIG. 16. Free runs starting from the solid-sliding regime for the
hard lubricant �Vll=1�. The velocity of the top substrate �solid
curves� and the average velocity of the lubricant �dotted curves�
versus time for �a� one-layer lubricant with ms=1, �b� five-layer
lubricant film with ms=1, and �c� five-layer lubricant film with ms

=10. The right panels demonstrate the scenarios near the sliding-to-
locked transition.

FIG. 17. “Melting-freezing” mechanism of the hysteresis for the
soft lubricant �Vll=1/9�: �a� the vtop�f� dependence and �b� the lu-
bricant temperature �left axes, solid symbols and curves� and the
change of the lubricant width �right axes, open symbols and dashed
curves� versus force.
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force decreases down to the lower value fb, the top plate
sticks again, and the process repeats.

Typical dependencies of the spring force versus time are
presented in Fig. 18.

In all cases when fs�0, the system exhibits a transition
from the stick-slip regime at low driving velocity to the
smooth sliding at high driving. The transition is typically
smooth; the system passes through an intermediate chaotic
regime. The details of the transition and the critical velocity
vc may depend on the parameters of the system such as the
atomic masses and the elastic constant of the spring, but in
all cases vc remains of atomic-scale order: vc�0.03–0.5
�16,24�. In our dimensionless system of units for the chosen
set of parameters, the sound speed of the substrate is vsound
�3 �16�. Thus, if we take a value vsound�103 m/s for a
typical solid, we come to the values vc�10–102 m/s, which
is more than six orders of magnitude higher than those typi-
cally claimed in experiments: vc�10−6 m/s.

IV. DISCUSSION AND CONCLUSION

Using several approaches different from the analytical one
for the semi-infinite three-dimensional substrate to molecular
dynamics based on Langevin equations with a realistic
coordinate- and velocity-dependent damping, we have shown
that the minimally possible velocity when the sliding re-
mains smooth, is of atomic-scale value �vb�10 m/s�, pro-
vided the static frictional force is nonzero. This fact has al-
ready been obtained in almost all previous MD simulations
�see, e.g., Ref. �5� and references therein�. However, there
were speculations that this is an artifact of MD simulation

because of typically too small sizes of the simulated system,
and that in a real situation the critical velocity should scale as
vb�M−1/2 with the �macroscopic� mass M of the sliding
block �5,7�. We have proven that this is not true: the simula-
tion does give correct values of the velocity. Moreover, the
critical velocity does not depend on the total mass of the
sliding block. Recently, this fact was also confirmed by Luan
and Robbins �25� with MD simulations.

The physics of this phenomenon lies in the dynamics of
the transition from smooth sliding to the pinned state. When
the lowest layer of the sliding block stops, the block does not
stop at once. A “stopping wave” is created and propagates
into the block, taking away the �macroscopic� kinetic energy
of the sliding block. This wave is damped in the block, and
the energy is finally transformed into heat. This mechanism
was first proposed by Persson �11�.

In the present work we have proved the Persson conjec-
ture analytically. The 1D model is solved exactly. For the 3D
model, we had to use the averaged Green function to solve
the problem, but the phonon spectrum of the semi-infinite
substrate is nevertheless introduced correctly so that the ap-
proximation can, at most, introduce an error of one order of
magnitude, much smaller than the discrepancy between mi-
croscopic and macroscopic results that we intend to analyze.
Moreover, our approach shows the difficulty of MD simula-
tion of a “macroscopically large” sliding block: If one wants
to make realistic simulations, the block height H should be
larger than 103 atomic layers, and special attention should be
given to the damping of elastic waves in the block. Other-
wise, due to interference of the stopping wave with the wave
reflected by the opposite surface of the block, a standing
wave is created, and it perturbs the sliding-to-locked transi-
tion. In this case the critical velocity vb scales with the height
of the sliding block as vb�H−1/2, as was recently observed
by Luan and Robbins �25� in MD simulation, where a con-
stant artificial damping was used. Because M �H, such simu-
lations lead to a �physically wrong� conclusion that vb
�M−1/2.

The minimally possible velocity vb determines in turn the
critical velocity vc of the transition from stick-slip motion to
smooth sliding: vc�vb. Thus, the simulations as well as the
analytical approach predict that the transition to smooth slid-
ing should take place at a huge velocity vc�10 m/s. This is
in strong disagreement with macroscopic experiments, where
a transition to smooth sliding is typically observed at vc
�1 �m/s �2–4�. However, precise experiments show that
stick-slip regime in fact persists at all velocities experimen-
tally available �see, e.g., the experimental results by Klein
and Kumacheva �26� and by Budakian and Putterman �28��.

Another fact directly connected with this question con-
cerns the effective viscosity �̃ of a thin lubricant film, which
is determined by a relationship �̃� fk /vc. Using experimental
values vc�1 �m/s leads to a common conclusion that the
viscosity of a thin lubricant film is many orders of magnitude
larger than that of the bulk lubricant, while MD simulation
predicts that the viscosity of the film in the smooth sliding
regime should be of the same order as the bulk value. In this
context we would like to mention a recent experimental re-
sult by Becker and Mugele �29�, where dynamics of squeez-
ing of a thin OMCTS film was studied, and the authors came

FIG. 18. Spring force versus time when a spring with the elastic
constant kspring=3
10−4 is attached to the top substrate and moves
with a constant velocity v. �a� The hard lubricant �Vll=1� for ve-
locities v=0.03, 0.1, and 0.3; and �b� the soft lubricant �Vll=1/9�
for velocities v=0.01, 0.03, and 0.3.
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to the conclusion that mutual friction between adjacent lubri-
cant layers is close to the bulk viscosity.

On the other hand, experimentally observed values of vc
�1 �m/s can be explained with the help of the earthquake-
like model �see, e.g., Ref. �30� and references therein�. These
theories assume that the sliding interface consists of many
point-like junctions �asperities, contacts, etc.�. The models
predict that the experimentally observed “smooth” sliding
corresponds actually to atomic-scale stick-slip motion of
many junctions, while the macroscopic-scale stick-slip be-
havior appears due to concerted motion of the many junc-
tions due to their elastic interaction. The necessary ingredient
of earthquake-like models is the assumption that the static
frictional force fs increases with the time of stationary con-
tact with a characteristic “aging” time �. The transition
should then be observed at vc� ã /�, where ã is an average
distance between the junctions. Note that if one takes an
exponential increase of fs�t� from a lower value fs1 to a
higher value fs2, then the earthquake-like model predicts
three regimes with two �smooth� transitions between them,
the smooth sliding with fk� fs2 at very low velocities, the
smooth sliding with fk� fs1 at high velocities, and the stick-
slip behavior at intermediate velocities �for details see Ref.
�30��. It is interesting that the two transitions indeed were
observed experimentally by Drummond et al. �31� for sliding
of adhesive surfactant-bearing surfaces in water.

The nature of the asperities in earthquake-like models is
more or less clear for the contact of two rough surfaces, but
it is questionable in the case of contact of two atomically
smooth mica surfaces �4�. A discussion on this topic may be
found, e.g., in the monograph by Persson �1� and in Ref. �9�.
An explanation could also be that there are some defects or

impurities in the contact area �see, e.g., Mukhopadhyay et al.
�27��. Another important question is a mechanism of the fs�t�
dependence, which gives macroscopic aging times ��1 s.
The only such mechanism could be a plastic deformation of
a softer part of the contact; i.e., the lubricant film. In the case
of lubricants consisting of “simple” molecules an increase of
fs with time may be due to a slow squeezing of the lubricant
from the contact area; for the case of long-chain organic
lubricants a slow process may be connected with interdiffu-
sion of lubricant molecules �1�.

Finally, it is important to note that all results of the
present work correspond to a tribological system with a pla-
nar geometry, when the area A of the contact scales with a
characteristic linear size R of the sliding block as A�R2.
However, our conclusions cannot be applied to STM-like
devices, where a tip of a macroscopic size �e.g., �1 mm�
moves over a surface, because in this case the real contact
area consists of only one or a few atoms. In the latter case the
total mass of the tip should certainly be important, and vc
would depend on M, as predicted by the MD simulation by
Luan and Robbins �25�.
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